Adenine
![]() | |||
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
9H-Purin-6-amine | |||
Other names
6-Aminopurine
| |||
Identifiers | |||
3D model (JSmol)
|
|||
608603 | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
DrugBank | |||
ECHA InfoCard | 100.000.724 | ||
EC Number |
| ||
3903 | |||
KEGG | |||
PubChem CID
|
|||
RTECS number |
| ||
UNII | |||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C5H5N5 | |||
Molar mass | 135.13 g/mol | ||
Appearance | white to light yellow, crystalline | ||
Density | 1.6 g/cm3 (calculated) | ||
Melting point | 360 to 365 °C (680 to 689 °F; 633 to 638 K) decomposes | ||
0.103 g/100 mL | |||
Solubility | negligible in ethanol, soluble in hot water and/or aqua ammonia | ||
Acidity (pKa) | 4.15 (secondary), 9.80 (primary)[1] | ||
Thermochemistry | |||
Heat capacity (C)
|
147.0 J/(K·mol) | ||
Std enthalpy of
formation (ΔfH⦵298) |
96.9 kJ/mol | ||
Hazards | |||
Lethal dose or concentration (LD, LC): | |||
LD50 (median dose)
|
227 mg/kg (rat, oral) | ||
Safety data sheet (SDS) | MSDS | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Adenine (/ˈædɪniːn/, /ˈædɪnɪn/) (symbol A or Ade) is a purine nucleotide base. It is one of the nucleobases in the nucleic acids, DNA and RNA. The shape of adenine is complementary to either thymine in DNA or uracil in RNA. In cells adenine, as an independent molecule, is rare. It is almost always covalently bound to become a part of a larger biomolecule.
Adenine has a central role in cellular respiration. It is part of adenosine triphosphate which provides the energy that drives and supports most activities in living cells, such as protein synthesis, chemical synthesis, muscle contraction, and nerve impulse propagation.[2] In respiration it also participates as part of the cofactors nicotinamide adenine dinucleotide, flavin adenine dinucleotide, and Coenzyme A.
It is also part of adenosine, adenosine monophosphate, cyclic adenosine monophosphate, adenosine diphosphate, and S-adenosylmethionine.
Structure
[edit]Adenine forms several tautomers, compounds that can be rapidly interconverted and are often considered equivalent. However, in isolated conditions, i.e. in an inert gas matrix and in the gas phase, mainly the 9H-adenine tautomer is found.[3][4]
Biosynthesis
[edit]Purine metabolism involves the formation of adenine and guanine. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which in turn is synthesized from a pre-existing ribose phosphate through a complex pathway using atoms from the amino acids glycine, glutamine, and aspartic acid, as well as the coenzyme tetrahydrofolate.
Patented August 20, 1968, the current recognized method of industrial-scale production of adenine involves heating formamide under 120 °C.[5]
Function
[edit]Adenine is one of the two purine nucleobases (the other being guanine) used in forming nucleotides of the nucleic acids. In DNA, adenine binds to thymine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. In RNA, which is used for protein synthesis, adenine binds to uracil.
![]() |
![]() |
![]() |
![]() |
A-T-Base-pair (DNA) | A-U-Base-pair (RNA) | A-D-Base-pair (RNA) | A-Ψ-Base-pair (RNA) |
Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose. It forms adenosine triphosphate (ATP), a nucleoside triphosphate, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. ATP is thus a derivative of adenine, adenosine, cyclic adenosine monophosphate, and adenosine diphosphate.
History
[edit]
In older literature, adenine was sometimes called Vitamin B4.[6] Due to it being synthesized by the body and not essential to be obtained by diet, it does not meet the definition of vitamin and is no longer part of the Vitamin B complex. However, two B vitamins, niacin and riboflavin, bind with adenine to form the essential cofactors nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD), respectively. Hermann Emil Fischer was one of the early scientists to study adenine.
It was named in 1885 by Albrecht Kossel after Greek ἀδήν aden "gland", in reference to the pancreas, from which Kossel's sample had been extracted.[7][8]
Adenine can be prepared from ammonia and hydrogen cyanide (HCN) in aqueous solution,[9] a process that has implications for the origin of life on Earth.[10]
On August 8, 2011, a report, based on NASA studies with meteorites found on Earth, was published suggesting building blocks of DNA and RNA (adenine, guanine and related organic molecules) may have been formed extraterrestrially in outer space.[11][12][13] In 2011, physicists reported that adenine has an "unexpectedly variable range of ionization energies along its reaction pathways" which suggested that "understanding experimental data on how adenine survives exposure to UV light is much more complicated than previously thought"; these findings have implications for spectroscopic measurements of heterocyclic compounds, according to one report.[14]
References
[edit]- ^ Dawson, R.M.C., et al., Data for Biochemical Research, Oxford, Clarendon Press, 1959.
- ^ Dunn, Jacob; Grider, Michael H. (2023). "Physiology, Adenosine Triphosphate". StatPearls. StatPearls Publishing. PMID 31985968. Retrieved 13 November 2023.
- ^ Plützer, Chr.; Kleinermanns, K. (2002). "Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy". Phys. Chem. Chem. Phys. 4 (20): 4877–4882. Bibcode:2002PCCP....4.4877P. doi:10.1039/b204595h.
- ^ M. J. Nowak; H. Rostkowska; L. Lapinski; J. S. Kwiatkowski; J. Leszczynski (1994). "Experimental matrix isolation and theoretical ab initio HF/6-31G(d, p) studies of infrared spectra of purine, adenine and 2-chloroadenine". Spectrochimica Acta Part A: Molecular Spectroscopy. 50 (6): 1081–1094. Bibcode:1994AcSpA..50.1081N. doi:10.1016/0584-8539(94)80030-8. ISSN 0584-8539.
- ^ [1], "Process for preparing adenine", issued 1966-11-10
- ^ Reader V (1930). "The assay of vitamin B(4)". The Biochemical Journal. 24 (6): 1827–31. doi:10.1042/bj0241827. PMC 1254803. PMID 16744538.
- ^ texte, Deutsche chemische Gesellschaft Auteur du (1885-01-01). "Berichte der Deutschen chemischen Gesellschaft zu Berlin". Gallica. Retrieved 2022-12-23.
- ^ "adenine | Etymology, origin and meaning of adenine by etymonline". www.etymonline.com. Retrieved 2022-12-23.
- ^ Oro J, Kimball AP (August 1961). "Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide". Archives of Biochemistry and Biophysics. 94 (2): 217–27. doi:10.1016/0003-9861(61)90033-9. PMID 13731263.
- ^ Shapiro, Robert (June 1995). "The prebiotic role of adenine: A critical analysis". Origins of Life and Evolution of Biospheres. 25 (1–3): 83–98. Bibcode:1995OLEB...25...83S. doi:10.1007/BF01581575. PMID 11536683. S2CID 21941930.
- ^ Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (Aug 2011). "Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases". Proceedings of the National Academy of Sciences of the United States of America. 108 (34): 13995–8. Bibcode:2011PNAS..10813995C. doi:10.1073/pnas.1106493108. PMC 3161613. PMID 21836052.
- ^ Steigerwald, John (8 August 2011). "NASA Researchers: DNA Building Blocks Can Be Made in Space". NASA. Archived from the original on 2015-06-23. Retrieved 2011-08-10.
- ^ ScienceDaily Staff (9 August 2011). "DNA Building Blocks Can Be Made in Space, NASA Evidence Suggests". ScienceDaily. Retrieved 2011-08-09.
- ^ Williams P (August 18, 2011). "Physicists Uncover New Data On Adenine, a Crucial Building Block of Life". Science Daily. Retrieved 2011-09-01.
- Barbatti M, Ullrich S (2011). "Ionization potentials of adenine along the internal conversion pathways". Physical Chemistry Chemical Physics. 13 (34): 15492–15900. Bibcode:2011PCCP...1315492B. doi:10.1039/C1CP21350D. PMID 21804965.